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A perturbation theory of coupled classical fields is developed on the basis of 
Hamilton's principle. In our investigation an individual description of an 
interacting many-particle system has been transferred, with the aid of a hydro- 
dynamical model, to an anonymous field-theoretical description. The quantiza- 
tion of the fields has also been carried through and turned out to be simple. The 
application of the theory to liquid helium He 4 shows a good quantitative 
agreement with experiment. This is a consequence of our theory offering the 
possibility to take coupling between free and perturbed fields into account. 
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1. Introduction 

A classical perturbation theory for a system having one degree of freedom, and 
its generalization to a multidimensional system with a finite number of degrees of 
freedom was already developed earlier [1-3] on the basis of Hamilton's principle. 

In the present paper, the extension of the theory to a system having an infinite 
number of degrees of freedom is reported on. In other words, classical fields inter- 
acting with each other can be treated perturbation theoretically. 

The difficulty connected with a denumerably infinite number of coordinates 
showing up in the case of an anonymous description of the field of a system, is 
bypassed with the aid of the cell-method. In this method, the mean value of the 
field's amplitude in a given cell is taken as a coordinate according to the Heisenberg- 
Pauli assumption [4]. The original set of a denumerably infinite number of co- 
ordinates is replaced by the set of enumerably infinite number of coordinates 
thus obtained. 
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The subject matter of our treatment is an interacting many-particle system in the 
gaseous or the fluid phase, given in an individual description. Starting from this 
individual description, we pass over to the anonymous field description with the 
aid of the hydrodynamical model. 

In this paper, the velocity field appearing in the hydrodynamical model is assumed 
to be irrotational at first. Such a field can be represented by a scalar potential 
field. A velocity field representable by a vectorial potential field will be the subject 
of a forthcoming paper. 

The determining equations for the correction fields of the different orders of 
perturbation are obtained with the aid of Hamilton's principle. The determining 
equations of different orders of approximation are in fact field equations for the 
respective correction field quantities. First each correction field turns out to be the 
solution of a characteristic field equation corresponding to the respective order of 
approximation. Evaluating the correction field quantities applying the classical 
perturbation theory we shall not be confronted with the undefinable operators 
which show up with the quantized hydrodynamical description [5]. It is advisable 
to introduce the canonically conjugated field quantity of the scalar field according 
to the well known definition. The expansion of the canonically conjugated field 
.according to small powers of parameters and subsequent comparison of the 
coefficients of equal powers yields the framework for the quantization of the field. 
Finally, the quantization of the fields is achieved by representing the correction 
field quantities determined perturbation theoretically in terms of operators of the 
free (unperturbed) field. 

As a special problem, we shall treat irrotational fluid helium He 4 according to our 
theory, showing the difference between the conventional method and ours. We 
shall also discuss the quantitative improvement which our theory yields when 
calculating the self energy. 

2. Perturbation Theoretical Treatment of  a Classical Field 

We consider a scalar field ~p(x), originating from an interacting many-particle 
system. Furthermore, we shall restrict ourselves to a single kind of particles. An 
individual description of an interacting many-particle system leads us, with the 
aid of the hydrodynamical model, to an anonymous field description. Using the 
cell-method, the Lagrange function of a denumerably infinite number of co- 
ordinates can be written as a sum over all the cells: 

L=Z 
S 

A subsequent limit process leads to the continuum, and yields the Lag-range 
density depending on the amplitude functions of the field q)(x) in all points of  the 
Minkowski-space, and their spacial and time derivatives 

6q~ 
q~,u =-~x,' xu = {xl' x2, xa' x4 ---ict} 
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in the following way: 

= j" dr L((p(x), q),u(x)). (2) L 

The Lagrange density of  the system should depend on a parameter 0([0, 1]). Let 
(p(x; 0) be the solution to the Hamiltonian extremum problem 

2 

3A =1.  5 f/~(q~, q~,,) dgx=0 .  (3) 
lC J 

1 

The numbers 1 and 2 appearing on the integral are supposed to indicate that at all 
the points the values of  the function (p(x; 0) to be varied are fixed on the border of 
space region at two times. 

It follows from this condition that 

(p~ ~ ~0(x; o = 0) (4) 

is the solution to the extremum problem 

2 

6 A o = l  6 f Lo(cp ~ (p,~ d 4 x :  0 (5) 

1 

where L o means the Lagrange density for N = 0. It corresponds to the field quantity 
resulting from the non-interacting particles. 

Now let us assume that the field quantity qo(x; o) at the site 0 = 0  can be expanded 
according to powers of 0 

q) (X ; 0) = @ 0 (X) + Oq) 1 (X) "t- O 2 @ 2 (X) + ' ' ' .  (6) 

As (p(x; a) will satisfy, for all values of ~r, the boundary conditions denoted by 
1 and 2 and as also (p~ being the solution to the extremum problem (5), satisfies 
these conditions, the correction functions (pm(x)(m>~ 1) have the property 

(0"(x(1)) = q0m(x(2)) = 0. (7) 

For the following we shall assume the extremum problem (5) has been solved so 
that the field quantity cp~ is known. We shall now solve the extremum problem 
(3) or, in other words, calculate the quantity (pm(x) ; m = 1, 2 . . . . .  To achieve this, 

L we shall expand the Lagrangian density L into a Taylor series = ~t= o ~ - To 
derive the Lagrangian density L~ according to the parameter o, we avail ourselves 
of the rules for implicit functions. According to this method, the Lagrangian 
density [ and the derivatives of ~,~ at the site o = 0, which we shall designate by 

\o<:  <pD)o:o (8) 
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can be written as 

s = WA, 
I 

l (1 +6=p) 

where 

=(gol) l(go2),2 . . . .  

2 2 

(O k ]fla__((O1 "}fl1((02 ]f12 

(9) 

(lO) 

2 a ~ + 2 f l ~ = l ~ l + 2 ~ 2 + . . . + l f l a + 2 f 1 2 + . . .  and a + f l + k = / .  

Inserting (9) into (3), the variational problem gets the new shape 
2 

3A=lzc" z=o ~' al 3 f A, dax=0. (11) 

1 

Now, the extremum problem (11) contains a set of functions gore(x) and go,~(x) to 
be varied. At the boundaries 1 and 2, all functions gore(x) assume the value 0. These 
are the conditions for the functions gore(x) which have to be considered when the 
variational problem is solved. 

The field equations equivalent to (11) are 

at [ ~ - ( ~  1 Al=0. (12, 
\ago ., / . ,  A 

The determining equation for the correction field quantity of order m is obtained 
by setting all the powers of a equal to 0 as the functions go'O(x) do not depend on 
the parameter a. The determining equations for the different orders of correction 
have to be considered as the respective field equation for the correction field. The 
first equation thus obtained (for l= 1, k = 0 and a, fl) satisfying conditions (10), i.e. 

G ~ ' ~ 1 7 6  =0 (13) 

does not yield anything of novelty character. It only shows that the field quantity 
go~ is the solution to the field equation 

0goo - ~ (~-~,u,u // ,u = 0 (14) 

of the extremum problem (3). 

However, the equation for l= 2, k = 0, and l=  2, k = 1 and the suitable a and fl 
values is the determining equation for the correction field quantity of the first 
order go l(x): 

~_.z +G~ +(G(~'au -G(~ '~ goa(x)= -(G~176 (15) (~x u 
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For the special case of one degree of freedom, Eq. (15) turns out to be the deter- 
mining equation for ql [1]. 

To get a handier expression for the field equation of higher correction order, we 
shall designate the differential operators with the aid of the symbol 

02 ~_+ o) a O , 2  , 0,2  1,1 Ok-- k Oxz*Gk,, ~x~, (Gk'" -G2'  (k=0,  1, 2, . .) (16) 

and the terms of the inhomogeneity by the symbol 

x - -  o, 1 1 ,o  
--ak+ 1 pg( )--Gk+~, . (k=0,  1, 2, .). (17) 

The coefficients of the powers 0 "2 and a 3 supply respectively the field equation for 
the unperturbed field and the correction field of first order. The coefficients of the 
powers a 4 yield the field equation for the correction of second order: 

aoq,2(x)  = - p l ( x ) -  a s  ~o1(x). (18) 
The field equation for the correction of order m is obtained from the coefficient of 
O-2m: 

m - 1  

f2oqr ~ Okqr "-k (m~>2) (19) 
k = l  

which, in the inhomogeneous term, only contains the functions q~"(x)(n<m) 
which are known. 

It should be stressed that the theory, owing to the expansion according to the 
small parameter a, supplies surplus information for the Lagrangian density as 
well as for the field quantity. For this reason, the determining equations for 
corrections of higher order are obtained from the coefficients of a 2m, m = 1, 2 . . . . .  
However, the theory opens up the possibility to consider the coupling between the 
unperturbed and perturbed fields; for l=  1, e.g., the theory contains apart from 
the Lagrangian density of the conventional quantum field theory also the coupling 
terms: 

- /Of ,  o'~ 1 / ~ E o ' ~  <o'... 

Field equation (19) for the correction of order m is a linear differential equation of 
second order and is therefore easy to handle. It is soluble in case the correction 
fields of orders lower than that of qr are known; but it is by no means the same 
field equation as the one satisfied by the unperturbed field. 

It seems expedient, for the quantization of the field to be carried out later, to 
introduce the canonically conjugated field quantity at t/(x) of the field ~o(x) which, 
according to the definition, will be 17(x)= ~L/#~. Here we expand according to 
the small parameter 

~(x)=~~ O-~(x)+G2~(x)+... 
(20) ~ 1 \ - 1  c~El 

= o - J _ _  . , +  
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By a comparison of the coefficients, we successively get the canonically conjugated 
field quantities t/~ and their correction quantities: 

tl~ = C~Lo 
0~ ~ 

1 ~L1 o x ~(01 
q ( x ) = ~ 6 - ~  / (x) 8(0o (21) 

~2(x)=8[_, 2 8L~ 8(01 
8(0 0 8(0 0 8(0 0, 

to be used for the quantization of the fields. 

3. The Quantization of the Fields 

The quantization of the non-interacting fields is carried out as usual, i.e. by re- 
quiring that the canonical field quantities ~o and qo satisfy the commutation 
relation 

h 
[r/~ q~~ =_  6(x - x'). (22) 

l 

As the correction quantities have already been determined by the above classical 
treatment, we only need to represent them by operators. 

The determining equation for the classical correction field of first order now has to 
be transformed into a quantum theoretical operator equation the formal solution 
of which will have the following shape owing to the rules of the operator calculus: 

qr = - f2 o l Po(X ). (23) 

In this equation, O o 1 designs the operator reciprocal to f20. If po(X) has a definite 
value at x it can be written with the aid of 6(x) function as follows: 

po(x) = f d4x ' po(X') 6 (x -  xf). (24) 

If we substitute this into (23) taking into account that the reciprocal differential 
operator f2 o 1 only acts upon the unprimed variables, the solution of the operator 
equation equivalent to the field equation for the correction of first order gets the 
form 

gol(x) = . f  d4x ' po (X ' ) ( -  (2o a 6 ( x - x ' ) ) .  (25) 

Introducing Green's function G(x, x'), which is defined by 

G(x, x ' ) =  - 0  o 1 ,~(x-x ')  



Theory of Coupled Fields 153 

we finally get: 

= fd*x'G(x, x') Po(X'). (26) q~l(x) 

By the same method, the correction of second order is obtained in the form 

(27, 

By repeating this procedure, corrections of arbitrarily high order containing only 
known operators can be obtained. Having the operator representations for the 
correction fields ~o"(x), also the canonically conjugated fields rtm(x) can easily be 
written in terms of operators. 

4. Application of the Theory to the Phonodispersion in He 4 

The Lagrangian density of the irrotatory fluid helium can be written, according to 
the hydrodynamical model [-6], as a function of the velocity potential v = Vcp, the 
density # and the density fluctuation ~/= # -  #o, as 

# 
s  r / 0 - ~  v 2 -  #5(#). (28) 

In this equation, e(#) is the internal energy per unit mass of the fluid. The expan- 
sion of the Lagrangian density according to ascending powers of the density 
fluctuation ~/leads to the coefficient [-7] 

- - - -  1-12 g o = r / ~ p - ~ ( V O )  2 c2 
2#0 

1 / d  c2'~ 3 Ll=--lV(tg~V(R-- ~7. ~-~)or/ (29) 

L 2 = - ~ .  7 o 

The quantization of the free field can be carried out in the usual manner, and the 
quanta turn out to be the elementary excitations of helium in the lower range of 
impulse, i.e. the phonons I-8]. 

The differential operator N o and the terms of inhomogeneity P0 used for the 
operator representation of the correction feld ~p i have, for the Lagrangian densi- 
ties L o and L1 in (29), the following shape: 

f2o = - #o A (30) 

and 

po(X) = - v�89 ~ v~o ~ + v~o% ~  - v{r/~ v~o ~ } +. (31) 

According to formula (25), the correction of first order is given by 
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~~ ~ =--1 (a3x, W{,ov,~oo}+(_~_ ~ 6(x-x')). (32) 
#o ./ 

The primes at the Nabla-operators are to show that the derivation has been carried 
out according to the primed coordinates. The Green's function defined by 
G(x, x')= -A-~ 3(x-x') has the solution 

G(x- x') = (4nix- x'l) -1 d kl'- x'l. (33) 

The operators appearing in the integrand of (32) can be written, using the Fourier- 
representation of q~O and qo as 

t 0" 1 V'{q ~ Vq) } + = f f  ~ (kk-k'Z){pkqk,}+ e -i(~-k')~'. (34) 
k, k' 

Putting in (33) and (34) into (32) and carrying out some integral calculation, the 
operator representation of the correction of first order gets the following shape: 

q~= 1 k~ (k-k')k' e_~(t,_k,)x," (35) 
#o V [k_k,[2 k,,2 {Pkqk'} + 

The operator qr is identical to zero in case both states k and k' are identical. As 
the interaction between the two fields is due to mutual perturbations of wave 
fields of different wave lengths, the vanishing of operator ~0 ~ for k=k' is under- 
standable from the physical standpoint. The expression for q~l in (35) can be 
represented with the aid of the phonon creation and phonon annihilation operators 
a s  

h i ~, (k-k').k'   1=2 0v Ik--k' lZ-k  "2 exp {-i(k-k').x'}. 
(36) 

Thus it can be seen that the correction field concerns two quantum processes. The 
canonically conjugated field r/1 corresponding to r can be expressed with the aid 
of formulae (21) and (36) as 

nl = h ( k - k ' ) . k '  
Z [k_k,[2_k,,~x/~(a*-a,)(a~-a-k)exp[-i(l+k)x'}" (37) 2Vc k , k ' , !  

From the expansion of the Hamiltonian density according to the small parameter 
a, one gets 

Apart from (/11)~= o, the interaction terms originate from (/~1)o and also from the 
other terms which represent the coupling between free and perturbed fields. The 
additional terms can be expressed with the aid of formulae (36) and (37) in the 
following manner: 
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(0/Qo~ - 1  //01qo'~ 1 1 ( l -m)  2 
v~o + i - =  -~ I n = - ~  , ...~- k I t -m] 2 - k 2  v~~176176176176 

\ a  Vq~)~= o \ vrI /~ = o , , 
(39) c2 v, (1-m).m 

rl o3. 
#o v i.~k II-m[ z -k2  

As the order of the additional terms is the same as that of 

\d#/~ )o t/~ (40) 

the total interaction can be summarized in the following way [9]" 

I-tint= Z V(k, l, m){�89 ,6(k+l+m)+aka]a~ 3(k--l+m)}+H.C. (41) 
k,l ,m 

the coupling constants being 

{ h3c ~1/~ 
V(k, l,m)= - i  ~3~oV ) x /~m 

(42) 
�9 {s 7fk(l, m) +7. Fnft(k, m) + [~. Fnfk (!, m) + (2u -- 1)g(u)}. 

Here )~ = k/k, u = po/c(Su/8p) o and the numerical factors are 

(l-m) z 
fk(l, m)= 1 - 2  [l_mlZ k ~, 

(I-m), m (43) 
if(u) =1 i t _ m l 2 k z  (2u- l )  -1. 

This theory differs from the conventional theory only by the coupling constants. 
For fk(l, m)= 1 and g(u)= 1 the two theories correspond to each other. 

The energy perturbation A ~ at 0~ can be determined, using the thermodynamical 
perturbation theory as in Ref. [10], by calculating all the contributions to self 
energy of lowest order and by letting T ~ 0, as Eckstein and Varga have shown 
[11]. Assuming that the total number of longitudinal phonons corresponds to the 
density of the number of helium atoms, the cut off impulse K can be estimated by 
K/h= (6nZN) 1/3. With this value K, the energy perturbation is obtained. 

K 4 
1) 9 (u)+-~(p/K) (u g ( u ) - g f  ):. (44) Aev= 327r2ktoh3 p{(u- 2 2 2 Z 2 2 3 2 )  

After a sort of renormalization of the velocity of sound [11], c'= c -Ac  with 
Ac=K4(u-1)zgZ(u)/(32rC2#oh3 ), one gets, as expected, the Landau phonon 
energy dispersion 

e = % + A ep-- c~o(1 - yp2) (45) 

where y=(KZ/48xZc'#oh3)(u292(u)-O.6f 2) with the data K/h=l.09 A -~ and 
u=2.6 • 1037 cgs units we get 7=2.27 • 1037 cgs units. This agrees well with the 
value 7=2.8 • 1037 cgs units estimated by neutron scattering [12]. The conven- 
tional theory [11] yields a value of ~ = 4.3 • 103~ cgs units. 
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5. Discussion 

By the extension of classical perturbation theory which has been developed on the 
basis of Hamilton's principle, a many-particle problem has been treated perturba- 
tion theoretically within the scope of a hydrodynamic field. Corrections of 
arbitrarily high orders can be obtained with the aid of determining equations for 
the respective orders, which turn out to be linear differential equations of second 
order. This means that correction fields of higher orders can be calculated itera- 
tively once the unperturbed problem has been solved. In this work, we have at 
first treated the case in which the field of velocity of fluid can be represented by a 
scalar potential field. The corrections calculated perturbation theoretically were 
quantized and can then be represented by known operators. This theory was then 
applied to the problem of phonon dispersion in fluid helium He 4. We found that 
this theory differs from the conventional as it also accounts for the coupling 
between free and perturbed fields in addition to conventional interaction. These 
contributions can be combined with the conventional interaction term as they 
depend in the same order on the operators as the conventional one does. There- 
fore, this new theory differs from the conventional by the coupling constants. The 
calculation for the 7 value yields a very good agreement with experimental values. 
It should therefore be stressed that the hydrodynamical model is a useful basis for 
the description of an interacting many-particle system. 
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